Data Mining and Machine Learning @ CSE, DIU
Fundamentals
- Lecture 2 - Basic
- Lecture 3 - Probability and Statistics of ML
- Lecture 4 - SMOTE, Random Undersampling and Oversampling
- Lecture 5 - Data Labelling
- Lecture 6 - Feature Selection (Ridge and LASSO)
Regression
- Lecture 7 - Linear Regression
- Lecture 8 - Polynomial Regression, Performance Metrics (MSE, RMSE, R2)
Classification
- Lecture 9 - Classification Algorithm (Logistic Regression, KNN)
- Lecture 10 - Decision Tree
- Lecture 11 - SVM
- Lecture 12 - Performance measures using confusion metrics
Clustering
- Lecture 13 - K-means Clustering
- Lecture 14 - Hierarchical Clustering
- Lecture 15 - DBSCAN
- Lecture 16 - Performance Metrics for Clustering